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Abstract  Energy efficiency in microcontrollers has played 

an important role in modern digital systems for years. With 

the increased need for longer battery life and increased 

complexity of functionalities offered, it becomes crucial to 

lower energy consumption as much as possible .Studies show 

that largest amount of energy in embedded systems gets 

consumed by the memory hierarchy system. Therefore there 

has been a lot of research pressure in the area of caching 

techniques with the attempt to reduce energy requirements 

and thus make battery life longer. A technique called Tight 

Loop Cache, believed as the most promising when power 

optimization is concerned, was chosen to be implemented and 

evaluated. TLC is different from conventional caching 

techniques because it does not include tagging of cache lines 

nor valid bits which makes it more attractive and easy to 

incorporate into a working system. 

The technique was implemented both in software (Python) 

and hardware (Verilog). This paper focuses only on the 

hardware implementation of the system and its results. Post 

implementation power reports showed that the use of TLC of 

64B can bring around 25% of power savings into a system 

working on 10 MHz and synthesized with FPGA fiber.  

 

1. INTRODUCTION 

There has always been conflict between low cost, high 

performance and low power consumption specifications in 

modern digital systems. MCUs are by far the best candidates 

to build systems targeting these applications mainly because 

they are self-contained. Low power consumption not only 

brings energy savings, but it also improves system reliability 

as a whole by reducing heat dissipation. This way 

components have longer life expectancy because their 

temperature does not change rapidly, they operate on a stable 

temperature and therefore there is no need for large cooling 

systems. 

In most digital systems, memory system consumes great 

part of the overall power consumption and this is why 

recently a lot of effort has been given to memory hierarchy 

design in a sense it consumes as little power as possible. 

Instruction memory access is one of the crucial points where 

these design modifications can be considered. The reason lays 

down in the fact that in a typical RISC ISA there are usually 

four times more instruction than data memory accesses [1]. 

Moreover, data is most commonly stored in SRAM whereas 

programs are stored in flash memory whose access infers 

much more energy consumption. These are all the reasons 

why it is believed that reducing instruction fetch energy 

consumption in systems like this would bring a great deal of 

overall energy consumption reduction.  

 

Embedded application programs usually consist of small 

number of loops executed many times. It comes natural the 

thought it would be very efficient to read those instructions 

from a small buffer (small cache) and thus reduce energy 

consumption. Most common approaches that involve caching 

hierarchies put this buffer between CPU and main memory 

which usually infers time penalties whenever there is a cache 

miss. Other schemes involve accessing main memory in the 

same cycle if there is a miss but with the penalty of longer 

cycle time. 

This paper briefly explains only the main principles of the 

work performed while the author was doing her Master 

Thesis at Norwegian Univesity for Science and Technology in 

Trondheim, Oslo in cooperation with Silicon Labs. More 

details about implementation and results can be found in the 

Master thesis itself [5]. 

 

2. TIGHT LOOP CACHE  

Tight Loop Cache, a technique proposed in [2] and chosen to 

be implemented in this project, consisted of a small direct 

map memory array and a loop cache controller. The 

advantage of using loop cache was double: it did not contain 

tag nor valid bit for each data instance. On the other hand, 

there was no timing penalty if there is a cache miss since the 

Controller had the early notion whether next fetch is going to 

be a hit or a miss. Based on this information, the core 

accessed either the loop cache or the main instruction 

memory. 

General principle laid down on the detection of the so called 

sbb instruction (short backward branch) which, when 

encountered, indicated that a loop was executed for the 

second time, i.e. the moment when loop cache started to be 

filled. Next detection of the same sbb instruction indicated the 

data was already in0 the loop cache and could be read from 

there.Short backward branch instruction was any kind of 

branching instruction, both conditional and unconditional, 

that had the format as shown in Figure 2.1. 

 

 

 

 

 

 

 
Figure 2.1 - sbb instruction format 

Upper displacement containing all ones suggested 

that the branching was going to be backwards (end of the loop 
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is encountered) whereas the lower displacement field 

determined how long the backward jump was going to be 

(how many instructions the loop consisted of). Lower part of 

the displacement field was w-bit wide which was directly 

connected to the size of loop cache, i. e. cache could not 

contain more than 2
w 

instructions (in case of an architecture 

where each memory location contained only one instruction 

and program counter was incremented by 1 to access next 

instruction). 

This made sure that the loop size could not be larger 

than the cache size. As mentioned earlier, tight loop cache 

was direct mapped (contained no address tags), only accessed 

by index field which was w bits wide. When a loop was 

smaller than 2
w 

instructions, only part of the loop cache was 

used and loop start did not have to be aligned to any 

particular address as in the case of many other techniques. 

Figure 2.1 shows how loop cache was organized and accessed 

in a case of n=2
w
 entries, each entry containing 2 bytes (the 

last bit of the instruction address was neglected). 

Loop Cache Controller was designed as a state 

machine with three states: IDLE, FILL and ACTIVE. 

Initially, the Controller was set to be in the IDLE mode all the 

time until it had been detected that there was an sbb 

instruction in the instruction stream. If the controller 

determined that there was an sbb instruction (information is 

received from the decoder) and that the branch was taken 

(information received from a branch status signal from the 

core), this meant there was a loop encountered and that it was 

going to be executed for the second time which made 

Controller move to FILL state. 

Figure 2.1 – Loop cache organization and access 

[2] 

The sbb instruction that forced the Controller to 

enter FILL state was called triggering sbb instruction. In the 

FILL state, instructions were still read from the main 

instruction memory, but at the same time cache was filled 

with the loop instruction stream. This state continued until 

there was no other change of flow (cof), i.e. no other branch 

or jump instruction (the program execution was sequential 

within the loop itself).  

Figure 2.2 – Loop cache controller state machine 

Controller went back to IDLE state in case it 

encounterd a non-sequential stream in the loop sequence 

which was not caused by the triggering sbb (some other 

branching/jumping instruction inside the loop itself) or if it 

determined that triggering sbb was not taken. Finally, if the 

triggering sbb was taken again, the Controller entered 

ACTIVE state and started reading instructions from the 

cache. It stayed in the ACTIVE state as long as the loop 

within itself remained sequential and as long as the triggering 

sbb, when encountered, was taken (the loop was going to be 

executed again). In any other case, the Controller went back 

to IDLE state. There was no way for Controller to migrate 

from ACTIVE state back to FILL state which was logical 

considering possible scenarios.  

The most important piece of information for the 

Controller to determine whether next instruction was a hit or a 

miss was to know when triggering sbb was fetched, executed 

and whether the cof was caused by the triggering sbb or some 

other  

instruction. The mechanism that made this possible was 

implemented as the Loop Counter mechanism which is shown 

in the Figure 2.3. 

Figure 2.3 – Design of the loop counter [2] 

The Controller was initially in IDLE state and stayed 

there until sbb was detected in the decode stage when its 

lower displacement field got loaded into the Count Register 

of the Increment Counter. This displacement gave the 

information of how many sequential instructions needed to be 

executed before sbb was fetched again. After the ld field was 

saved and later on determined that sbb was taken as well, the 

Controller entered FILL state. While in this state, on each 

sequential instruction in the execute stage, Increment Counter 

was incremented by one. By the time Counter reached zero, 

the Controller knew that the triggering sbb was being fetched. 
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If the sbb was taken, the Controller entered ACTIVE state 

and the Increment Register was loaded with the ld field of 

triggering sbb again. This meant that the execution of the loop 

started from the beginning again and when the counter 

reached zero again, the same process was repeated. Using this 

mechanism, the Controller knew when a cof is caused by 

triggering sbb by examining the value in the Increment 

Register.  

The original technique of using tight loop cache and 

loop controller, proposed in [2] and briefly explained here, 

was implemented both in software and hardware with slight 

modifications in author’s Master Thesis. This report will only 

present some of the results and implementationh details about 

the hardware solution. 

  

3. HARDWARE IMPLEMENTATION 

 

Project was dealing with Silicon Labs EFM32 

MCUs which are based either on ARM Cortex-M0+, ARM 

Cortex-M3 or ARM Cortex-M4 and are used together with 

low power peripherals to address any low power application 

(communications, alarm and security systems, control 

systems, industrial sensors, medical solutions, car and traffic 

control systems …) This section shows how TLC system was 

built by integrating additional hardware modules around 

Cortex-M0 core delivered by ARM as an obfuscated verilog 

code. Both Loop Cache Controller, Loop Cache itself and 

other auxiliary modules were designed in Verilog by the 

author. 

The system was implemented as an AHB bus system 

(communication bus used by ARM, more details about it can 

be found in [3]) that contained one master: the processor 

core, two slaves: main instruction memory and the cache 

memory and a decoder (Controller) to decide which slave to 

access. The system was not a typical master-slave system 

since the nature of the communication between the Instruction 

Memory and the core is based on a continuous 

communication, the instruction memory was never written to 

(HWRITE was set low all the time) and therefore was ready 

to give data whenever the processor made a request 

(HREADY was high all the time). Another thing that was 

specific for this system was the period when the Controller 

was in the FILL state: both slaves were accessed at the same 

time: main memory was read from and that same data was 

written into the cache.  Controller was also making decision 

which memory would output instructions into the core by 

controlling the multiplexer. So, this system had more 

differences than similarities to a typical AHB master slave 

system and in the case of need of adding more slaves to the 

system they would need to have their own decoder and 

multiplexer of course and respect the principle of continuous 

communication between the memory system and the core.  

 

Figure 3.1– Introducing Loop cache into the core 

system 

 

 

As it can be seen from Figure 3.1, there were three new 

components added to the initial core-memory system: the 

Loop Cache Controller, Loop Cache and the multiplexer and 

the implementation of all of them will be explained in next 

sections.  

 

3.1. Loop Cache Controller 

 

As it was explained in Chapter 2, the purpose of the 

controller was to determine when the program execution 

entered a loop, fill in the cache with the loop instructions and 

finally from the third iteration of the loop read the 

instructions from the cache, of course if it is the same loop 

that is being executed all the time. Two approaches of loop 

detection were discussed: the one from Chapter 2, the original 

loop detection principle whereas the second approach was 

explained in the software implemantation of the system in [5]. 

These two approaches are shown in Figure 3.2 where only 

differences between them are shown, i.e. input signals. 

 

Figure 3.2 – Two different Loop Cache Controller 

implementations and their interfaces 

 

The first principle, which is going to be called the 

decode principle, would have to have the instruction code as 

input and originally, as proposed in the paper, a status flag 

from the core which would give the information about the 

branch status: if the branch was taken or not taken. Since 

Cortex-M0 had no branch status signal as it would be case if 

Cortex-M3 was used, the second input would have been the 

flags from the core (in the case of Cortex-M0 those are last 

four bits of the APSR register: negative, zero, cary and 

overflow flags). More details about the ARM Cortex-M0 can 

be found in [3] and [4] whereas details of importantance to 

this project can be found in [5]. The Controller would 

perform decoding of the instruction, if a potential branch 

would have been decoded it would check status of the 

corresponding flag and determine whether to branch or not. 

The next step would be to calculate the branching offset and 

initiate counter register from Figure 2.3 with that value. The 

rest of the system would behave as described in Chapter 2. 

 

The second principle, called address compare would 

use only address of the instruction to be fetched next, make a 

delayed copy of the address, compare those two and 

determine whether there was a backward branch or not. This 

principle is explained in details in [5]. 

 

If Cortex-M3 was used in the project it would have 

made more sense to use the Decode Controller with the 

branch status flag as input. In the case of Cortex-M0 there 
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was no real advantage of using this principle because the 

decoding logic of loop detection would have to be 

complicated and completely redundant since decoding is 

already done within the processor itself (but its results are 

unfortunatelly unavailable). Since whole software 

implementation in Python was done using the second 

principle, it was more convenient to use this approach in 

hardware as well. The timing differences between two 

implementations are shown in Figure 3.3 and it can be seen 

that decode approach would have the advantage of detecting a 

loop one clock cycle before but with a far more complicated 

and redundant logic whereas the address compare approach 

would be one cycle late. This one cycle delay cannot create 

great damage only if care is taken that the singal main/cache 

which controls where data should be read from was set and 

reset at particular rising clock edges as shown in Figure 3.3.  

Figure 3.3 – Timing comparison between two 

different controller implementations 

As it can be seen in Figure 3.3, for the address 

compare implementation, the Controller changes its states 

from IDLE to ACTIVE and from FILL to ACTIVE on the 

next rising edge after a branch target address was sampled 

(address 312 in Figure 3.3). The way this was really 

happening when simulating the system itself is shown in 

Figure 3.4 where it can be seen how the cache is behaving 

correctly and according to AHB transfer rules with an address 

and a data phase. 

Figure 3.4 – Chosen controller implementation and 

its state switching and control signal toggling 

Apart from address bus as input shown in Figure 3.1, 

the Controller had HTRANS[1] and HPROT[0] inputs which 

were indicating that instruction transaction needed to be 

performed [3]. It was very important that the signal 

main/cache toggled before that clock edge (not synchronous 

to the state change) so that proper memory could have been 

used as source. This is also illustrated in Figure 3.5 where 

critical signal changes are shown in red. 

Figure 3.5 – Controller State Machine with output 

control signals 

The signal main_cache and its values shown in red 

indicate that the signal value had to be changed as soon as a 

certain condition was encountered, it could not wait for the 

state machine to change its state. As it can be noticed, the 

final version of Controller had only two output control 

signals: cache write enable (cache_we) and a signal that was 

enabling output of either main memory or the cache, 

depending on the state of the controller (main_cache). 

Signal descriptions and their values depending on the state of 

the Controller are shown in Table 3.1 (values shown in red 

are the critical ones, the ones that change before the state 

changes). 

Table 3.1 – Controller output signals 

Output 

signal 
Description IDLE 

FIL

L 

ACT

IVE 

main 

cache 

Decides whether data 

from the address now 

present on the address 

bus should be read from 

cache or from instruction 

memory 

1 1 0 

cache 

we 

Indicates that the data 

from the  address 

currently on the bus 

should be written into the 

cache (on the next clock 

rising edge) 

0 1 0 
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Table 3.2 shows how input enable signal of the 

instruction memory was depending on the 

global_cache_enable signal controlled by the user and 

main_cache output signal from the Controller. Input enabling 

signal of the cache memory was created just by inverting this 

signal.  

Table 3.2 – Instruction Memory Enable signal 

generation 

Global Cache 

Enable 

(A) 

Main Cache (from 

Controller) 

(B) 

Instruction 

Memory Enable 

(C) 

0 0 1 

0 1 1 

1 0 0 

1 1 1 

Definitive enable signal was created of course by multiplying 

this signal by HTRANS[1] signal of the AHB bus which was 

used to initiate a transaction.  

3.2. Loop Cache 

As it can be seen from Figure 3.1, HTRANS[1] was used 

as input into the cache as well although it was already used to 

create enable signal which could be maybe then disputed to 

be redundant. This signal is one cycle delayed within the 

cache itself (it is called htrans_a inside cache) in order to 

perform correct write since the address the cache is writing 

data in is also when cycle delayed (address_a). The writing 

process is shown in Figure 3.6. In the case simulated, address 

bus of the loop cache was 3b wide (8 locations each 

containing 4B) and those were HADDR[4:2] bits. Least 

significant 2 bits from the address bus were completely 

neglected in the whole system since both memories are word 

addressable. 

Figure 3.6- Process of filling 

the Loop Cache 

Figure 3.6 shows how cache writing process was 

performed and clearly illustrates one of the benefit of this 

implementation of the loop cache where instructions did not 

need to be aligned to any starting address  whereas they still 

remained consecutive (first location to be written into was 6, 

the second one was 7, third was 0 and the last one was 1).  

Address_a was only a one cycle delayed version of address 

signal and at first it was created within the cache module itself 

but later on it was noticed that there was a signal within loop 

cache controller module that was containing the previous 

address  already. If a part of that signal (lower n bits if n is the 

width of the address buds of the cache) was taken from there 

already, some hardware savings could be gained. 

4. TESTING SETUP AND RESULTS

After the system was built, it was necessary to simulate its

behaviour and prove it was working correctly which was done 

using VIVADO simulator. The design had to work properly 

both after implementation and after place and route of course, 

which was proven by behavioural, post synthesis and post 

implementation simulations.  

As it was mentioned, it was possible to measure 

power both after synthesis and after implementation, without 

toggling information, with toggling information for some 

signals or with complete toggling information for all nodes. 

Testing setups were using Instruction Memory of size 32KB 

as in the case of Zero Gecko whereas different cache sizes 

(16B, 32B and 64B) and programs with different loop sizes 

(8 instructions, 16 instructions, 24 instructions, 32 

instructions and 40 instructions) were used. Not all the results 

will be presented here. More details can be found in [5]. 

Table 4.1 shows power reports for the case of Instruction 

Memory of size 32KB and the cache size of 64B. Next to 

each power number there is a level of confidence stated: low 

for a report with default toggle rate and high when using a 

switching activity file obtained from corresponding 

simulation. 

Figure 4.1- Complete power report, VIVADO  

( 32KB Instruction Memory, 64B cache, loop size 8, 

cache enabled) 

Table 4.1 shows that, as expected, when having no 

information about the toggle rate and assuming default toggle 

rate for each signal, the power results get worse than in the 

case of knowing the exact toggle rates. 
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Table 4.1 – Dynamic power reports after synthesis 

and after implementation using different toggling information 

(32KB Instruction Memory, 64B cache, loop size 8) 

Table 4.2 – Power report generation details for 

different measurement configurations 

Config Power report generation details 

1 
post synthesis power report with default toggle rate 

for all nodes 

2 
post synthesis power report with exact toggle rate 

for global_enable signal 

3 
post synthesis power report with proper .saif file as 

input 

4 
post implementation power report with default 

toggle rate for all nodes 

5 
post implementation power report with exact 

toggle rate for global_enable signal 

6 
post implementation power report with proper .saif 

file as input 

The results also show that exact power consumption can 

be known only after place and route is performed and that a 

lot of dynamic power consumption (in this case around 12% 

and 7%, depending on global enable signal value) gets 

consumed by the clock tree and wiring itself. Complete power 

report (with both static and dynamic power numbers), Figure 

4.1, shows that most of the power consumption (around 69%) 

belongs to static power consumption which is reasonable 

considering that Zynq-7000 AP SoCs use 28nm High-K 

Metal Gate (HKMG) technology. It is well known that by 

lowering process node technology, leakage power becomes a 

dominant contributor to the overall power consumption. 

Therefore it becomes reasonable why a non-conventional 

process had to be used at these gate sizes. 

High-K Metal Gate (HKMG) process is a process where the 

capacitance of the gate oxide gets increased by using a 

dielectric with a higher κ than the one of a SiO2 that is 

normally used as a gate oxide. 

But even with a sophisticated process like this, static 

power still dominates the overall power consumption and not 

much can be done to reduce it. That is why all the results in 

the following results will refer to dynamic power 

consumption only since the static one was fixed: 256mW.  

Having a look at the results from Table 4.1, it can be seen 

that in the case of enabling usage of loop cache there was a 

dynamic power saving of 1mW compared to the case when no 

cache was added into the system. Considering the overall 

power consumption of 114mW this saving of less than 1% 

was not something to be too much proud of. On the other 

hand, these results show the consumption of the entire system 

(with the core itself of course) so it was necessary to separate 

the consumption of the core form the consumption of the 

memory system alone. This was performed by synthesizing 

the core alone (with no Instruction Memory, no cache 

memory but with the rest of the system). The post 

implementation power report is shown in  Figure 4.2. 

Figure 4.2 - Power report of the system with no 

memory hierarchy 

Comparing this result of dynamic power consumption of 

110mW with no memory hierarchy with 114mW using only 

Instruction Memory and 113mW when enabling use of cache, 

it is easy to conclude that memory system itself consumed 

either 3mW or 4mW depending if the cache was enabled or 

not. Saving of 1mW when enabling usage of cache now 

becomes 25% which is a result that cannot be neglected.  

Although utility reports showed that Instruction Memory was 

built from BRAM blocks and cache memory merely from flip 

flops (LUTs), there was no notion of the power ratio between 

a read from a BRAM and a read from a flip flop. This is why 

writes and reads numbers can help getting the feeling about 

real power consumption if the hardware was synthesized as an 

ASIC and not from FPGA fibre.  

More information about the system setup and 

measurements performed as well as details of the software 

implementation can be found in [5]. 

5. CONCLUSION

It was proven that the principle can be integrated within a 

system that uses ARM Cortex-M0 which does not offer any 

advanced information, such as branch status of the 

instructions in different pipeline stages. This leads to a 

conclusion that the technique could be easily integrated into 

any modern system. Excessive simulation of the hardware 

implementation showed the principle can be successfully 

applied to any modern MCU system. Power optimization 

Instruction 

Memory 

(32KB) 

1 2 3 4 5 6 

no 

cache 

power 

[mW] 

104 103 100 
 117 

115 114 

confide

nce 
low low high low low high 

with 

cache 

power 

[mW] 
108 107 106 116 114 113 

confide

nce 
low low high low low high 
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techniques of VIVADO synthesis and place and route tools 

were exploited to their maximum and showed that the use of 

the technique could bring up to 25% energy savings. 

Some of these issues were mentioned at the end of last 

Chapter, such as ratio of power of memory access to a bit 

RAM and a register bit. In the technology available at Silicon 

Labs, this ratio goes as far as 1:10 which would definitely 

bring more savings since this ratio in the FPGA fibre is 

believed to go as close to 1:1.  

Main conclusion that can be made from all the results 

discussed is that the initial system hardware implementation 

was not set in a best possible way to achieve correct power 

saving numbers: FPGAs are usually used only to build 

prototypes and prove principles of operation. This was 

successfully performed: a working design that is using a small 

cache to store instructions from small loops was built and 

even brought around 25% power savings into the memory 

hierarchy system. 
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