
Naučno-stručni simpozijum Energetska efikasnost | ENEF 2015, Banja Luka, 25-26. septembar 2015. godine

Rad po pozivu

IMPROVING THE ENERGY EFFICIENCY OF MICROCONTROLLERS

Maja Popovic, RT-RK Banjaluka

Marius Graneas, Silicon Labs Oslo

Donn Morrison, NTNU Trondheim

Branko Dokic, ETF Banjaluka

Abstract  Energy efficiency in microcontrollers has played

an important role in modern digital systems for years. With

the increased need for longer battery life and increased

complexity of functionalities offered, it becomes crucial to

lower energy consumption as much as possible .Studies show

that largest amount of energy in embedded systems gets

consumed by the memory hierarchy system. Therefore there

has been a lot of research pressure in the area of caching

techniques with the attempt to reduce energy requirements

and thus make battery life longer. A technique called Tight

Loop Cache, believed as the most promising when power

optimization is concerned, was chosen to be implemented and

evaluated. TLC is different from conventional caching

techniques because it does not include tagging of cache lines

nor valid bits which makes it more attractive and easy to

incorporate into a working system.

The technique was implemented both in software (Python)

and hardware (Verilog). This paper focuses only on the

hardware implementation of the system and its results. Post

implementation power reports showed that the use of TLC of

64B can bring around 25% of power savings into a system

working on 10 MHz and synthesized with FPGA fiber.

1. INTRODUCTION

There has always been conflict between low cost, high

performance and low power consumption specifications in

modern digital systems. MCUs are by far the best candidates

to build systems targeting these applications mainly because

they are self-contained. Low power consumption not only

brings energy savings, but it also improves system reliability

as a whole by reducing heat dissipation. This way

components have longer life expectancy because their

temperature does not change rapidly, they operate on a stable

temperature and therefore there is no need for large cooling

systems.

In most digital systems, memory system consumes great

part of the overall power consumption and this is why

recently a lot of effort has been given to memory hierarchy

design in a sense it consumes as little power as possible.

Instruction memory access is one of the crucial points where

these design modifications can be considered. The reason lays

down in the fact that in a typical RISC ISA there are usually

four times more instruction than data memory accesses [1].

Moreover, data is most commonly stored in SRAM whereas

programs are stored in flash memory whose access infers

much more energy consumption. These are all the reasons

why it is believed that reducing instruction fetch energy

consumption in systems like this would bring a great deal of

overall energy consumption reduction.

Embedded application programs usually consist of small

number of loops executed many times. It comes natural the

thought it would be very efficient to read those instructions

from a small buffer (small cache) and thus reduce energy

consumption. Most common approaches that involve caching

hierarchies put this buffer between CPU and main memory

which usually infers time penalties whenever there is a cache

miss. Other schemes involve accessing main memory in the

same cycle if there is a miss but with the penalty of longer

cycle time.

This paper briefly explains only the main principles of the

work performed while the author was doing her Master

Thesis at Norwegian Univesity for Science and Technology in

Trondheim, Oslo in cooperation with Silicon Labs. More

details about implementation and results can be found in the

Master thesis itself [5].

2. TIGHT LOOP CACHE

Tight Loop Cache, a technique proposed in [2] and chosen to

be implemented in this project, consisted of a small direct

map memory array and a loop cache controller. The

advantage of using loop cache was double: it did not contain

tag nor valid bit for each data instance. On the other hand,

there was no timing penalty if there is a cache miss since the

Controller had the early notion whether next fetch is going to

be a hit or a miss. Based on this information, the core

accessed either the loop cache or the main instruction

memory.

General principle laid down on the detection of the so called

sbb instruction (short backward branch) which, when

encountered, indicated that a loop was executed for the

second time, i.e. the moment when loop cache started to be

filled. Next detection of the same sbb instruction indicated the

data was already in0 the loop cache and could be read from

there.Short backward branch instruction was any kind of

branching instruction, both conditional and unconditional,

that had the format as shown in Figure 2.1.

Figure 2.1 - sbb instruction format

Upper displacement containing all ones suggested

that the branching was going to be backwards (end of the loop

upper

displacement

lower

displacement

opcode 11…11 X X … X X

 w bit wide

 branch displacement

136

is encountered) whereas the lower displacement field

determined how long the backward jump was going to be

(how many instructions the loop consisted of). Lower part of

the displacement field was w-bit wide which was directly

connected to the size of loop cache, i. e. cache could not

contain more than 2
w

instructions (in case of an architecture

where each memory location contained only one instruction

and program counter was incremented by 1 to access next

instruction).

This made sure that the loop size could not be larger

than the cache size. As mentioned earlier, tight loop cache

was direct mapped (contained no address tags), only accessed

by index field which was w bits wide. When a loop was

smaller than 2
w

instructions, only part of the loop cache was

used and loop start did not have to be aligned to any

particular address as in the case of many other techniques.

Figure 2.1 shows how loop cache was organized and accessed

in a case of n=2
w
 entries, each entry containing 2 bytes (the

last bit of the instruction address was neglected).

Loop Cache Controller was designed as a state

machine with three states: IDLE, FILL and ACTIVE.

Initially, the Controller was set to be in the IDLE mode all the

time until it had been detected that there was an sbb

instruction in the instruction stream. If the controller

determined that there was an sbb instruction (information is

received from the decoder) and that the branch was taken

(information received from a branch status signal from the

core), this meant there was a loop encountered and that it was

going to be executed for the second time which made

Controller move to FILL state.

Figure 2.1 – Loop cache organization and access

[2]

The sbb instruction that forced the Controller to

enter FILL state was called triggering sbb instruction. In the

FILL state, instructions were still read from the main

instruction memory, but at the same time cache was filled

with the loop instruction stream. This state continued until

there was no other change of flow (cof), i.e. no other branch

or jump instruction (the program execution was sequential

within the loop itself).

Figure 2.2 – Loop cache controller state machine

Controller went back to IDLE state in case it

encounterd a non-sequential stream in the loop sequence

which was not caused by the triggering sbb (some other

branching/jumping instruction inside the loop itself) or if it

determined that triggering sbb was not taken. Finally, if the

triggering sbb was taken again, the Controller entered

ACTIVE state and started reading instructions from the

cache. It stayed in the ACTIVE state as long as the loop

within itself remained sequential and as long as the triggering

sbb, when encountered, was taken (the loop was going to be

executed again). In any other case, the Controller went back

to IDLE state. There was no way for Controller to migrate

from ACTIVE state back to FILL state which was logical

considering possible scenarios.

The most important piece of information for the

Controller to determine whether next instruction was a hit or a

miss was to know when triggering sbb was fetched, executed

and whether the cof was caused by the triggering sbb or some

other

instruction. The mechanism that made this possible was

implemented as the Loop Counter mechanism which is shown

in the Figure 2.3.

Figure 2.3 – Design of the loop counter [2]

The Controller was initially in IDLE state and stayed

there until sbb was detected in the decode stage when its

lower displacement field got loaded into the Count Register

of the Increment Counter. This displacement gave the

information of how many sequential instructions needed to be

executed before sbb was fetched again. After the ld field was

saved and later on determined that sbb was taken as well, the

Controller entered FILL state. While in this state, on each

sequential instruction in the execute stage, Increment Counter

was incremented by one. By the time Counter reached zero,

the Controller knew that the triggering sbb was being fetched.

137

If the sbb was taken, the Controller entered ACTIVE state

and the Increment Register was loaded with the ld field of

triggering sbb again. This meant that the execution of the loop

started from the beginning again and when the counter

reached zero again, the same process was repeated. Using this

mechanism, the Controller knew when a cof is caused by

triggering sbb by examining the value in the Increment

Register.

The original technique of using tight loop cache and

loop controller, proposed in [2] and briefly explained here,

was implemented both in software and hardware with slight

modifications in author’s Master Thesis. This report will only

present some of the results and implementationh details about

the hardware solution.

3. HARDWARE IMPLEMENTATION

Project was dealing with Silicon Labs EFM32

MCUs which are based either on ARM Cortex-M0+, ARM

Cortex-M3 or ARM Cortex-M4 and are used together with

low power peripherals to address any low power application

(communications, alarm and security systems, control

systems, industrial sensors, medical solutions, car and traffic

control systems …) This section shows how TLC system was

built by integrating additional hardware modules around

Cortex-M0 core delivered by ARM as an obfuscated verilog

code. Both Loop Cache Controller, Loop Cache itself and

other auxiliary modules were designed in Verilog by the

author.

The system was implemented as an AHB bus system

(communication bus used by ARM, more details about it can

be found in [3]) that contained one master: the processor

core, two slaves: main instruction memory and the cache

memory and a decoder (Controller) to decide which slave to

access. The system was not a typical master-slave system

since the nature of the communication between the Instruction

Memory and the core is based on a continuous

communication, the instruction memory was never written to

(HWRITE was set low all the time) and therefore was ready

to give data whenever the processor made a request

(HREADY was high all the time). Another thing that was

specific for this system was the period when the Controller

was in the FILL state: both slaves were accessed at the same

time: main memory was read from and that same data was

written into the cache. Controller was also making decision

which memory would output instructions into the core by

controlling the multiplexer. So, this system had more

differences than similarities to a typical AHB master slave

system and in the case of need of adding more slaves to the

system they would need to have their own decoder and

multiplexer of course and respect the principle of continuous

communication between the memory system and the core.

Figure 3.1– Introducing Loop cache into the core

system

As it can be seen from Figure 3.1, there were three new

components added to the initial core-memory system: the

Loop Cache Controller, Loop Cache and the multiplexer and

the implementation of all of them will be explained in next

sections.

3.1. Loop Cache Controller

As it was explained in Chapter 2, the purpose of the

controller was to determine when the program execution

entered a loop, fill in the cache with the loop instructions and

finally from the third iteration of the loop read the

instructions from the cache, of course if it is the same loop

that is being executed all the time. Two approaches of loop

detection were discussed: the one from Chapter 2, the original

loop detection principle whereas the second approach was

explained in the software implemantation of the system in [5].

These two approaches are shown in Figure 3.2 where only

differences between them are shown, i.e. input signals.

Figure 3.2 – Two different Loop Cache Controller

implementations and their interfaces

The first principle, which is going to be called the

decode principle, would have to have the instruction code as

input and originally, as proposed in the paper, a status flag

from the core which would give the information about the

branch status: if the branch was taken or not taken. Since

Cortex-M0 had no branch status signal as it would be case if

Cortex-M3 was used, the second input would have been the

flags from the core (in the case of Cortex-M0 those are last

four bits of the APSR register: negative, zero, cary and

overflow flags). More details about the ARM Cortex-M0 can

be found in [3] and [4] whereas details of importantance to

this project can be found in [5]. The Controller would

perform decoding of the instruction, if a potential branch

would have been decoded it would check status of the

corresponding flag and determine whether to branch or not.

The next step would be to calculate the branching offset and

initiate counter register from Figure 2.3 with that value. The

rest of the system would behave as described in Chapter 2.

The second principle, called address compare would

use only address of the instruction to be fetched next, make a

delayed copy of the address, compare those two and

determine whether there was a backward branch or not. This

principle is explained in details in [5].

If Cortex-M3 was used in the project it would have

made more sense to use the Decode Controller with the

branch status flag as input. In the case of Cortex-M0 there

138

was no real advantage of using this principle because the

decoding logic of loop detection would have to be

complicated and completely redundant since decoding is

already done within the processor itself (but its results are

unfortunatelly unavailable). Since whole software

implementation in Python was done using the second

principle, it was more convenient to use this approach in

hardware as well. The timing differences between two

implementations are shown in Figure 3.3 and it can be seen

that decode approach would have the advantage of detecting a

loop one clock cycle before but with a far more complicated

and redundant logic whereas the address compare approach

would be one cycle late. This one cycle delay cannot create

great damage only if care is taken that the singal main/cache

which controls where data should be read from was set and

reset at particular rising clock edges as shown in Figure 3.3.

Figure 3.3 – Timing comparison between two

different controller implementations

As it can be seen in Figure 3.3, for the address

compare implementation, the Controller changes its states

from IDLE to ACTIVE and from FILL to ACTIVE on the

next rising edge after a branch target address was sampled

(address 312 in Figure 3.3). The way this was really

happening when simulating the system itself is shown in

Figure 3.4 where it can be seen how the cache is behaving

correctly and according to AHB transfer rules with an address

and a data phase.

Figure 3.4 – Chosen controller implementation and

its state switching and control signal toggling

Apart from address bus as input shown in Figure 3.1,

the Controller had HTRANS[1] and HPROT[0] inputs which

were indicating that instruction transaction needed to be

performed [3]. It was very important that the signal

main/cache toggled before that clock edge (not synchronous

to the state change) so that proper memory could have been

used as source. This is also illustrated in Figure 3.5 where

critical signal changes are shown in red.

Figure 3.5 – Controller State Machine with output

control signals

The signal main_cache and its values shown in red

indicate that the signal value had to be changed as soon as a

certain condition was encountered, it could not wait for the

state machine to change its state. As it can be noticed, the

final version of Controller had only two output control

signals: cache write enable (cache_we) and a signal that was

enabling output of either main memory or the cache,

depending on the state of the controller (main_cache).

Signal descriptions and their values depending on the state of

the Controller are shown in Table 3.1 (values shown in red

are the critical ones, the ones that change before the state

changes).

Table 3.1 – Controller output signals

Output

signal
Description IDLE

FIL

L

ACT

IVE

main

cache

Decides whether data

from the address now

present on the address

bus should be read from

cache or from instruction

memory

1 1 0

cache

we

Indicates that the data

from the address

currently on the bus

should be written into the

cache (on the next clock

rising edge)

0 1 0

139

Table 3.2 shows how input enable signal of the

instruction memory was depending on the

global_cache_enable signal controlled by the user and

main_cache output signal from the Controller. Input enabling

signal of the cache memory was created just by inverting this

signal.

Table 3.2 – Instruction Memory Enable signal

generation

Global Cache

Enable

(A)

Main Cache (from

Controller)

(B)

Instruction

Memory Enable

(C)

0 0 1

0 1 1

1 0 0

1 1 1

Definitive enable signal was created of course by multiplying

this signal by HTRANS[1] signal of the AHB bus which was

used to initiate a transaction.

3.2. Loop Cache

As it can be seen from Figure 3.1, HTRANS[1] was used

as input into the cache as well although it was already used to

create enable signal which could be maybe then disputed to

be redundant. This signal is one cycle delayed within the

cache itself (it is called htrans_a inside cache) in order to

perform correct write since the address the cache is writing

data in is also when cycle delayed (address_a). The writing

process is shown in Figure 3.6. In the case simulated, address

bus of the loop cache was 3b wide (8 locations each

containing 4B) and those were HADDR[4:2] bits. Least

significant 2 bits from the address bus were completely

neglected in the whole system since both memories are word

addressable.

Figure 3.6- Process of filling

the Loop Cache

Figure 3.6 shows how cache writing process was

performed and clearly illustrates one of the benefit of this

implementation of the loop cache where instructions did not

need to be aligned to any starting address whereas they still

remained consecutive (first location to be written into was 6,

the second one was 7, third was 0 and the last one was 1).

Address_a was only a one cycle delayed version of address

signal and at first it was created within the cache module itself

but later on it was noticed that there was a signal within loop

cache controller module that was containing the previous

address already. If a part of that signal (lower n bits if n is the

width of the address buds of the cache) was taken from there

already, some hardware savings could be gained.

4. TESTING SETUP AND RESULTS

After the system was built, it was necessary to simulate its

behaviour and prove it was working correctly which was done

using VIVADO simulator. The design had to work properly

both after implementation and after place and route of course,

which was proven by behavioural, post synthesis and post

implementation simulations.

As it was mentioned, it was possible to measure

power both after synthesis and after implementation, without

toggling information, with toggling information for some

signals or with complete toggling information for all nodes.

Testing setups were using Instruction Memory of size 32KB

as in the case of Zero Gecko whereas different cache sizes

(16B, 32B and 64B) and programs with different loop sizes

(8 instructions, 16 instructions, 24 instructions, 32

instructions and 40 instructions) were used. Not all the results

will be presented here. More details can be found in [5].

Table 4.1 shows power reports for the case of Instruction

Memory of size 32KB and the cache size of 64B. Next to

each power number there is a level of confidence stated: low

for a report with default toggle rate and high when using a

switching activity file obtained from corresponding

simulation.

Figure 4.1- Complete power report, VIVADO

(32KB Instruction Memory, 64B cache, loop size 8,

cache enabled)

Table 4.1 shows that, as expected, when having no

information about the toggle rate and assuming default toggle

rate for each signal, the power results get worse than in the

case of knowing the exact toggle rates.

140

Table 4.1 – Dynamic power reports after synthesis

and after implementation using different toggling information

(32KB Instruction Memory, 64B cache, loop size 8)

Table 4.2 – Power report generation details for

different measurement configurations

Config Power report generation details

1
post synthesis power report with default toggle rate

for all nodes

2
post synthesis power report with exact toggle rate

for global_enable signal

3
post synthesis power report with proper .saif file as

input

4
post implementation power report with default

toggle rate for all nodes

5
post implementation power report with exact

toggle rate for global_enable signal

6
post implementation power report with proper .saif

file as input

The results also show that exact power consumption can

be known only after place and route is performed and that a

lot of dynamic power consumption (in this case around 12%

and 7%, depending on global enable signal value) gets

consumed by the clock tree and wiring itself. Complete power

report (with both static and dynamic power numbers), Figure

4.1, shows that most of the power consumption (around 69%)

belongs to static power consumption which is reasonable

considering that Zynq-7000 AP SoCs use 28nm High-K

Metal Gate (HKMG) technology. It is well known that by

lowering process node technology, leakage power becomes a

dominant contributor to the overall power consumption.

Therefore it becomes reasonable why a non-conventional

process had to be used at these gate sizes.

High-K Metal Gate (HKMG) process is a process where the

capacitance of the gate oxide gets increased by using a

dielectric with a higher κ than the one of a SiO2 that is

normally used as a gate oxide.

But even with a sophisticated process like this, static

power still dominates the overall power consumption and not

much can be done to reduce it. That is why all the results in

the following results will refer to dynamic power

consumption only since the static one was fixed: 256mW.

Having a look at the results from Table 4.1, it can be seen

that in the case of enabling usage of loop cache there was a

dynamic power saving of 1mW compared to the case when no

cache was added into the system. Considering the overall

power consumption of 114mW this saving of less than 1%

was not something to be too much proud of. On the other

hand, these results show the consumption of the entire system

(with the core itself of course) so it was necessary to separate

the consumption of the core form the consumption of the

memory system alone. This was performed by synthesizing

the core alone (with no Instruction Memory, no cache

memory but with the rest of the system). The post

implementation power report is shown in Figure 4.2.

Figure 4.2 - Power report of the system with no

memory hierarchy

Comparing this result of dynamic power consumption of

110mW with no memory hierarchy with 114mW using only

Instruction Memory and 113mW when enabling use of cache,

it is easy to conclude that memory system itself consumed

either 3mW or 4mW depending if the cache was enabled or

not. Saving of 1mW when enabling usage of cache now

becomes 25% which is a result that cannot be neglected.

Although utility reports showed that Instruction Memory was

built from BRAM blocks and cache memory merely from flip

flops (LUTs), there was no notion of the power ratio between

a read from a BRAM and a read from a flip flop. This is why

writes and reads numbers can help getting the feeling about

real power consumption if the hardware was synthesized as an

ASIC and not from FPGA fibre.

More information about the system setup and

measurements performed as well as details of the software

implementation can be found in [5].

5. CONCLUSION

It was proven that the principle can be integrated within a

system that uses ARM Cortex-M0 which does not offer any

advanced information, such as branch status of the

instructions in different pipeline stages. This leads to a

conclusion that the technique could be easily integrated into

any modern system. Excessive simulation of the hardware

implementation showed the principle can be successfully

applied to any modern MCU system. Power optimization

Instruction

Memory

(32KB)

1 2 3 4 5 6

no

cache

power

[mW]

104 103 100
 117

115 114

confide

nce
low low high low low high

with

cache

power

[mW]
108 107 106 116 114 113

confide

nce
low low high low low high

141

techniques of VIVADO synthesis and place and route tools

were exploited to their maximum and showed that the use of

the technique could bring up to 25% energy savings.

Some of these issues were mentioned at the end of last

Chapter, such as ratio of power of memory access to a bit

RAM and a register bit. In the technology available at Silicon

Labs, this ratio goes as far as 1:10 which would definitely

bring more savings since this ratio in the FPGA fibre is

believed to go as close to 1:1.

Main conclusion that can be made from all the results

discussed is that the initial system hardware implementation

was not set in a best possible way to achieve correct power

saving numbers: FPGAs are usually used only to build

prototypes and prove principles of operation. This was

successfully performed: a working design that is using a small

cache to store instructions from small loops was built and

even brought around 25% power savings into the memory

hierarchy system.

6. REFERENCES

[1] D.A. Petterson, J.L. Hennessy, „Computer Organisation

and Design“, 5th edition, Morgan Kaufman, 2014

[2] L. H. Lee, B. Moyer, J. Arends, “ Instruction Fetch

Energy Reduction Using Loop Caches For Embedded

Applicatio ns with Small Tight Loops ” , Low Pow er

Electronics and Design, 1999. Precedings, 1999.

International Symposium on IEEE, 1999

[3] „AMBA 3 AHB Lite Protocol Specification“, ARM,

2010, available at www.arm.com

[4] „ARM Cortex-M0 Design Start“,ARM, 2010

[5] M. Popovic, „Improving the energy efficiency of a

microcontroller instruction fetch using tight loop cache“,

NTNU, 2015

142

http://www.arm.com/

	1. Dio_ENEF2015_Zbornik_bez_num
	ENEF 2015 - Prve strane Zbornika radova

	2. ENEF2015_Radovi
	21. ENEF_2015_paper_23_new

